
International Journal of Scientific & Engineering Research, Volume 6, Issue 4, April-2015 413
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

Functional composition of quantum functions
Nikolay Raychev

Abstract - The Boolean functions are a classic way for capturing one of the most basic computations. In this dissertation they are used as
a means for specifying an information which is coded in the phase space of a quantum state. This, in turn, may serve for understanding of
key examples of disturbance at quantum calculations based on the chain model. Here are examined the main properties and algebraic
structures of single qubit Boolean functions and their composition, the combination of primitive Boolean functions with the operator for
excluding or, ⊕ , as well as the expression of these functions and their negation as an expression, using ⊕ and B = {0, 1}, the set of the
single-byte strings.

Index Terms - Boolean function, circuit, composition, encoding, gate, phase, quantum.

——————————  ——————————

1 INTRODUCTION
The interpretation of the quantum computations as calcula-
tions from a physical process, and not as abstract control of
symbols leads to a broader concept for computability. In ac-
cordance with the postulates of the quantum mechanics is
identified also the concept for unitary transformations as the
most fundamental paradigm for "physical computability".
Unlike the classic symbol calculations, where each individual
step of calculation may correspond to a bit string, the physical
quantum calculation is in need of such a label only for the
initial and final machine state. If a quantum computer is seen
as probabilistic machine ℳ, the above mentioned require-
ments are equivalent to the countability of the sets for input
and output, and 𝒪 . The quantum operators are further de-
fined by the encoding of a binary information for their input
data to the phase of their output data. This encoding is ex-
pressed as a Boolean function of n-bit strings, which corre-
spond to the basic states of the n-qubit state. Furthermore, the
interference between the operators is characterized in terms of
these encoding functions with specific connections between
the encoding functions, which produce a special case of an
interference, called decoding.

2 COMPOSITION OF BOOLEAN FUNCTIONS
2.1 Single Qubit Boolean functions
The single qubit operators extract their encoding functions
from the set of the single-byte Boolean functions.
Definition 1. The set 𝐵1 is equal to {𝑓|𝑓 ∶ 𝔹 ↦ 𝔹} = {ID, NOT,
ZERO, ONE}, where
𝐼𝐼:𝑏 → 𝑏
𝑁𝑁𝑁:𝑏 → 𝑏�
𝑍𝑍𝑍𝑍:𝑏 → 0
𝑂𝑂𝑂:𝑏 → 1 (1)
and 𝑏� indicates the negation of b ∈ 𝔹

The set 𝐵1 can be divided into two non-intersecting subsets.
BAL = {ID, NOT}
CONST = {ZERO, ONE}
The operation with these subsets, simplifies future discussions
on the composition of elements of 𝐵1 in functions for encoding
the phase.

𝑩𝟏 under composition

The expression of Boolean functions as a functional composi-
tion of elements of B1 is a major part from the development
and manipulation of functions for phase encoding.

Formal prerequisite 1. The set 𝐵1 together with the binary
operator for composition ◦ forms the monoid (𝐵1, ◦).

Proof. Must be taken into account the Cayley table for (𝐵1, ◦),
given in Table 1.

Table 1: Cayley table for monoid (B^1, ◦)

It is clear that ID is a neutral element and (𝐵1, ◦) is closed un-
der a composition. Since the composition as a whole is associa-
tive, (𝐵1, ◦) is a monoid. The construction and the interaction of
functions for phase encoding sometimes include a composi-
tion and therefore the knowledge of different means for sim-
plifying the composition of the elements in B1 is useful. The
composition on the right of the CONST function f can be re-
duced to f, because it effectively "overshadows" the results of
the function on the right. In other words, the result from the
function on the right does not participate in the result from the
CONST function f.

Formal consequence 1. For function f ∈ CONST and g ∈ B1, f ◦ g
∈ f.
Proof. The proof follows from the Cayley table and the rows
for CONST functions. The composition of the elements in 𝐵1
the subset BAL is clearly defined as a group.

Formal consequence 2. The set BAL together with the binary
operator for composition ◦ forms the Abelian group (BAL, ◦).

Proof. From the Cayley table and Formal prerequisite 1 it is
clear that (BAL, ◦) is a monoid. Also the Cayley table for B1
shows, that the elements of BAL are their own reverse ele-
ments and (BAL, ◦) is commutative. The composition of the

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 4, April-2015 414
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

CONST elements is also clearly defined, but not that much
well-structured as the composition in BAL.

Formal consequence 3. The set CONST together with the binary
operator for composition ◦ form the semigroup (CONST, ◦).
Proof. From Formal prerequisite 2.2.1.1 and the Cayley table
for (𝐵1, ◦) follows that (CONST, ◦) is associative and closed
under ◦.

A series of operators often have an encoding function, which
effectively includes the reapplication of a Boolean function of
one or more bits. That is why it is useful to be understand how
and when the recomposition can be addressed or simplified.

Definition 2. For f ∈ 𝐵1, 𝑓𝑛 is the iterated composition of f.
𝑓𝑛 = �𝐼𝐼 𝑛 = 0

𝑓 ∘ 𝑓𝑛−1 𝑛 > 0 (2)

An induction can be used, in order to be removed the recur-
sion from Definition 2.

Formal prerequisite 2. If f ∈ 𝐵1 and n > 0,

𝑓𝑛 = �
𝑓 𝑓 ∈ 𝐶𝐶𝐶𝐶𝐶
𝐼𝐼 𝑓 = 𝐼𝐼 𝑜𝑜 𝑓 = 𝑁𝑁𝑁 𝑎𝑎𝑎 𝑛 𝑖𝑖 𝑒𝑒𝑒𝑒
𝑁𝑁𝑁 𝑓 = 𝑁𝑁𝑁 𝑎𝑎𝑎 𝑛 𝑖𝑖 𝑜𝑜𝑜

 (3)

Proof. When f = ID , then at n > 1 𝑓𝑛= ID, where ID is the neu-
tral element of the operator. That is why it is necessary to
demonstrate that at f = NOT and n > 1, when n is even, then
𝑓𝑛= ID and when n is odd 𝑓𝑛= NOT. For n = 1 𝑁𝑁𝑁 1 = 𝑁𝑁𝑁
and then the assertions are true. For n = 2 и 𝑁𝑁𝑁 2 = 𝑁𝑁𝑁 ◦
𝑁𝑁𝑁 = 𝐼𝐼. If it is accepted that the Assertion is true for all n =
k, then for (k+1) is obtained

𝑁𝑁𝑁 𝑘 + 1 = 𝑁𝑁𝑁 ∘ 𝑁𝑁𝑁 𝑘 = �
𝑁𝑁𝑁 ∘ 𝑁𝑁𝑁 𝑖𝑖 𝑘 𝑖𝑖 𝑜𝑜𝑜

𝑁𝑁𝑁 ∘ 𝐼𝐼 𝑖𝑖 𝑘 𝑖𝑖 𝑒𝑒𝑒𝑒

= �
 𝐼𝐼 𝑖𝑖 𝑘 𝑖𝑠 𝑜𝑜𝑜

𝑁𝑁𝑁 𝑖𝑖 𝑘 𝑖𝑖 𝑒𝑒𝑒𝑒

the second equality follows from the Statements for induc-
tion. .

2.2 Operators for excluding OR
It is possible to express a set 𝐵1 with the help of the single-byte
values 𝔹 and the operator for excluding or. This, in turn, will
allow the combination of Boolean functions, and not only
Boolean values, through the operator for excluding or. The
algebraic structure of the Boolean values, combined by exclud-
ing or, is well known, but is expressed in a different way in
Formal prerequisite 3. The set 𝔹 together with the operator for
excluding or ⊕ forms the Abelian group (𝔹, ⊕).
Proof. The Cayley table should be taken into account (𝔹, ⊕).

Table 1: Cayley table for (B, ⊕).

From the Cayley table follows, that 𝔹 is closed under ⊕ and

that ⊕ is both associative and commutative. Even more, 0 is
the neutral element and each element is its opposite.
The Group (𝔹, ⊕) captures the functions in the 𝐵1.
𝐼𝐼(𝑏) = 𝑏 ⊕ 0 = 𝑏
𝑁𝑁𝑁(𝑏) = 𝑏 ⊕ 1 = 𝑏�
𝑍𝑍𝑍𝑍(𝑏) = 𝑏 ⊕ 𝑏 = 0
𝑂𝑂𝑂(𝑏) = 𝑏 ⊕𝑁𝑁𝑁(𝑏) = 1 (4)
The most common way for composing 𝐵1 functions in phased
functions is through the operator for excluding or. Equation 4
allows for expansion of ⊕ to 𝐵1.
Definition 3. The operator for excluding or ⊕ on the set 𝐵1 is
defined in such way that for each b ∈ 𝔹 and f, g ∈ 𝐵1
(𝑓⊕𝑔)(𝑏) = 𝑓(𝑏)⊕𝑔(𝑏)
The composition of elements from 𝐵1, using ⊕, have a well-
defined structure.
Formal prerequisite 4. The set 𝐵1 together with the operator for
excluding or ⊕ forms the Abelian group (𝐵1, ⊕).
Proof. The Cayley table for (𝐵1, ⊕) follows from equation 4.

Table 2.1: Cayley table for (𝑩𝟏, ⊕).

From table 2.2 follows that 𝐵1 is closed under ⊕. In fact for f,
g ∈ 𝐵1 is obtained

𝑓⨂𝑔 𝜖 � 𝐵𝐵𝐵 𝑓 𝜖 𝐵𝐵𝐵,𝑔 𝜖 𝐶𝐶𝐶𝐶𝐶 𝑜𝑜 𝑓 𝜖 𝐶𝐶𝐶𝐶𝐶,𝑔 𝜖 𝐵𝐵𝐵
𝐶𝐶𝐶𝐶𝐶 𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒

 (5)

Furthermore, it is obtained that ⊕ is commutative, ZERO is

the neutral element and each element from 𝐵1 is its opposite.

The associativity of ⊕ can easily be checked through Defini-

tion 3 and equation 4.

Note 4 Equation 5 is useful in analysis of functions, defined by
combination of elements from 𝐵1 using the operator ⊕.
Similar to ⊕ on 𝔹, the reapplication of ⊕ can be extended to
𝐵1, as shown in definition 4 and Formal prerequisite 4.
Definition 4. For f ∈ 𝐵1, 𝑓⊕𝑛 , is the iterated composition
through ⊕ of f.

 𝑓⊕𝑛 = �
𝑍𝑍𝑍𝑍 𝑛 = 0
𝑓⊕ 𝑓⊕(𝑛−1) 𝑛 > 0 (6)

Formal prerequisite 5. For f ∈ 𝐵1 and n > 0,

𝑓⨁𝑛 = �
𝑓 𝑖𝑖 𝑛 𝑖𝑖 𝑜𝑜𝑜
𝑍𝑍𝑍𝑍 𝑖𝑖 𝑛 𝑖𝑖 𝑒𝑒𝑒𝑒 (7)

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 4, April-2015 415
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

Proof. At n = 1 𝑓⊕1 = f and the Assertions is true. At n = 2 𝑓⊕2
= f ⊕ f = ZERO. If it is accepted that the Assertion is true for
all n = k, then for (k+1) is obtained

𝑓⊕(𝑘+1) = 𝑓 ⊕ 𝑓⊕𝑘 = �
𝑓 ⊕ 𝑓 𝑖𝑖 𝑘 𝑖𝑖 𝑜𝑜𝑜

𝑓 ⊕𝑍𝑍𝑍𝑍 𝑖𝑖 𝑘 𝑖𝑖 𝑒𝑒𝑒𝑒

= �
 𝑍𝑍𝑍𝑍 𝑖𝑖 𝑘 𝑖𝑖 𝑜𝑜𝑜
𝑓 𝑖𝑖 𝑘 𝑖𝑖 𝑒𝑒𝑒𝑒

the second equality follows from the hypothesis for induction.

Functions for negation and addition in 𝐁𝟏
The addition or negation of functions play a key role at the
approach for phase encoding and decoding to the models of
disturbance.
The collating process of the function f ∈ 𝐵1 to its addition 𝑓̅
can be expressed in many different ways.
Formal prerequisite 6. For each f ∈ 𝐵1,

𝑓̅ = �

𝑓⨁𝑂𝑂𝑂 𝑎𝑎𝑎𝑎𝑎𝑎
𝑂𝑂𝑂⨁𝑓 𝑎𝑎𝑎𝑎𝑎𝑎
𝑁𝑁𝑁 ∘ 𝑓 𝑎𝑎𝑎𝑎𝑎𝑎
𝑓 ∘ 𝑁𝑁𝑁 𝑓 ∈ 𝐵𝐵𝐵

 (8)

Proof. The proof of the above equations follows from the Cay-
ley tables for ⊕ and ◦, Definition 3 and Formal prerequisite 3.

It is also useful to be understood how the addition is distribut-
ed on ◦.
Formal consequence 4. For the functions f and g in 𝐵1,

𝑓 ∘ 𝑔������ = �𝑓
̅ ∘ 𝑔 𝑎𝑎𝑎𝑎𝑎𝑎
𝑓 ∘ 𝑔̅ 𝑓 ∈ 𝐵𝐵𝐵 (9)

Proof. The distributivity of the addition of a function with ◦
derives from consequence 3.
The following Formal prerequisite is useful at the develop-
ment of ideas for phase encoding and decoding, as it allows
the negation of bits to be subtracted in the phase function and
in this way allows for operation only with (𝐵1, ◦, ⊕).
Formal prerequisite 7. If 𝑥̅ = NOT(x) at x ∈ 𝔹. Then for each f
∈ 𝐵1, f(𝑥̅) = (f ◦ NOT)(x) = (f ⊕ ONE)(x).
Proof. The fact that f(𝑥̅) = f(NOT(x)) = (f ◦ NOT)(x) is clear. The
fact that f(𝑥̅) = (f ⊕ NOT)(x) follows from the definition for NOT,
given in equation 3.
Structure of (𝑩𝟏, ◦, ⊕)
The elements of phase functions, namely 𝐵1, under composi-
tion by ◦ and ⊕ have well defined algebraic structure.
Formal prerequisite 8. The structure (𝐵1, ◦, ⊕) is a right close
ring.
Proof. (𝐵1, ⊕) is Abelian group. (𝐵1, ◦) is a monoid and there-
fore semigroup. Finally, ◦ is distributed on ⊕ on the right, so
that
(a ⊕ b) ◦ c = (a ◦ c) ⊕ (b ◦ c)
In order to be seen this, are viewed three cases.

Where a, b ∈ CONST. According to equation 5 (a ⊕ b) is in
CONST and therefore (a ⊕ b) ◦ c = (a ⊕ b) = (a ◦ c) ⊕ (b ◦ c) for
each c ∈ 𝐵1 according to consequence 3.
Where a, b ∈ BAL. According to equation 5 (a ⊕ b) is in
CONST and therefore (a ⊕ b) ◦ c = (a ⊕ b) according to conse-
quence 2.2.1.2. When c ∈ BAL, then by Formal consequence 3
the composition of a or b with c or will define a and b, at c = ID,
or will reverse their sign at c = NOT. It is easily proved that, in
all cases, this will reduce (a ◦ c) ⊕ (b ◦ c) to (a ⊕ b).
When a and b are located in different subsets of 𝐵1. Without
losing the generality, it can be assumed that a ∈ BAL and b ∈
CONST. From consequence 3 follows that (a ◦ c) ⊕ (b ◦ c) = (a ◦
c) ⊕ b and at b = ZERO, (a ◦ c) ⊕ b = (a ◦ c) = (a ⊕ b) ◦ c. When
b = ONE, according to consequence 2.2.2.5 (a ◦ c) ⊕ b = (𝑎� ◦ c) =
(a ⊕ b) ◦ c.

3 CONCLUSION
One of the key components of this chapter, in contrast to the
standard presentation of B1, is showing the difference between
the sets BAL and CONST. Although the express handling with
these sets may look at this stage randomly, it is an important
element of the functions for phase encoding. Often it is possi-
ble to be simplified the analysis of an encoding function or
decoding connection only through the understanding of the
ways in which BAL and CONST functions interact. The right
close ring (𝐵1, ⊕) serves as a basis for construction of Boolean
functions, that capture the encoding of binary information to
the phase space of quantum states. The algebraic structures,
presented in this chapter, explicitly emphasize the ways in
which these functions can be manipulated.

IJSER

http://www.ijser.org/

	1 Introduction
	2 Composition of Boolean functions
	2.1 Single Qubit Boolean functions
	2.2 Operators for excluding OR

	3 Conclusion

