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Functional composition of quantum functions 
Nikolay Raychev 

 

Abstract - The Boolean functions are a classic way for capturing one of the most basic computations.  In this dissertation they are used as 
a means for specifying an information which is coded in the phase space of a quantum state. This, in turn, may serve for understanding of 
key examples of disturbance at quantum calculations based on the chain model. Here are examined the main properties and algebraic 
structures of single qubit Boolean functions and their composition, the combination of primitive Boolean functions with the operator for 
excluding or, ⊕ , as well as the expression of these functions and their negation as an expression, using ⊕ and B = {0, 1}, the set of the 
single-byte strings.   

Index Terms - Boolean function, circuit, composition, encoding, gate, phase, quantum.    

——————————      —————————— 

1 INTRODUCTION                                                                     
The interpretation of the quantum computations as calcula-
tions from a physical process, and not as abstract control of 
symbols leads to a broader concept for computability. In ac-
cordance with the postulates of the quantum mechanics is 
identified also the concept for unitary transformations as the 
most fundamental paradigm for "physical computability". 
Unlike the classic symbol calculations, where each individual 
step of calculation may correspond to a bit string, the physical 
quantum calculation is in need of such a label only for the 
initial and final machine state. If a quantum computer is seen 
as probabilistic machine ℳ, the above mentioned require-
ments are equivalent to the countability of the sets for input 
and output,  and 𝒪 . The quantum operators are further de-
fined by the encoding of a binary information for their input 
data to the phase of their output data. This encoding is ex-
pressed as a Boolean function of n-bit strings, which corre-
spond to the basic states of the n-qubit state. Furthermore, the 
interference between the operators is characterized in terms of 
these encoding functions with specific connections between 
the encoding functions, which produce a special case of an 
interference, called decoding.  

2 COMPOSITION OF BOOLEAN FUNCTIONS 
2.1 Single Qubit Boolean functions 
The single qubit operators extract their encoding functions 
from the set of the single-byte Boolean functions. 
Definition 1. The set 𝐵1 is equal to {𝑓|𝑓 ∶ 𝔹 ↦ 𝔹} = {ID, NOT, 
ZERO, ONE}, where 
𝐼𝐼:𝑏 → 𝑏 
𝑁𝑁𝑁:𝑏 → 𝑏� 
𝑍𝑍𝑍𝑍:𝑏 → 0 
𝑂𝑂𝑂:𝑏 → 1     (1) 
and 𝑏� indicates the negation of b ∈ 𝔹 
 
The set 𝐵1 can be divided into two non-intersecting subsets. 
BAL = {ID, NOT} 
CONST = {ZERO, ONE}     
The operation with these subsets, simplifies future discussions 
on the composition of elements of 𝐵1 in functions for encoding 
the phase. 
 
𝑩𝟏 under composition 

The expression of Boolean functions as a functional composi-
tion of elements of B1 is a major part from the development 
and manipulation of functions for phase encoding.  
 
Formal prerequisite 1. The set 𝐵1 together with the binary 
operator for composition ◦ forms the monoid (𝐵1, ◦). 
 
Proof. Must be taken into account the Cayley table for (𝐵1, ◦), 
given in Table 1. 

 
Table 1: Cayley table for monoid (B^1, ◦) 

 
It is clear that ID is a neutral element and (𝐵1, ◦) is closed un-
der a composition. Since the composition as a whole is associa-
tive, (𝐵1, ◦) is a monoid. The construction and the interaction of 
functions for phase encoding sometimes include a composi-
tion and therefore the knowledge of different means for sim-
plifying the composition of the elements in B1 is useful. The 
composition on the right of the CONST function f can be re-
duced to f, because it effectively "overshadows" the results of 
the function on the right. In other words, the result from the 
function on the right does not participate in the result from the 
CONST function f.  
 
Formal consequence 1. For function f ∈ CONST and g ∈ B1, f ◦ g 
∈ f. 
Proof. The proof follows from the Cayley table and the rows 
for CONST functions. The composition of the elements in 𝐵1 
the subset BAL is clearly defined as a group. 
 
Formal consequence 2. The set BAL together with the binary 
operator for composition ◦ forms the Abelian group (BAL, ◦). 
 
Proof. From the Cayley table and Formal prerequisite 1 it is 
clear that (BAL, ◦) is a monoid. Also the Cayley table for B1 
shows, that the elements of BAL are their own reverse ele-
ments and (BAL, ◦) is commutative. The composition of the 
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CONST elements is also clearly defined, but not that much 
well-structured as the composition in BAL. 
 
Formal consequence 3. The set CONST together with the binary 
operator for composition ◦ form the semigroup (CONST, ◦).   
Proof. From Formal prerequisite 2.2.1.1 and the Cayley table 
for (𝐵1, ◦) follows that (CONST, ◦) is associative and closed 
under ◦. 
 
A series of operators often have an encoding function, which 
effectively includes the reapplication of a Boolean function of 
one or more bits. That is why it is useful to be understand how 
and when the recomposition can be addressed or simplified. 
 
Definition 2. For f ∈ 𝐵1, 𝑓𝑛 is the iterated composition of f. 
𝑓𝑛 =  �𝐼𝐼                     𝑛 = 0

𝑓 ∘ 𝑓𝑛−1          𝑛 > 0     (2) 

 
An induction can be used, in order to be removed the recur-
sion from Definition 2. 
 
Formal prerequisite 2. If f ∈ 𝐵1 and n > 0, 
 

𝑓𝑛 =  �
𝑓                                                      𝑓 ∈ 𝐶𝐶𝐶𝐶𝐶
𝐼𝐼          𝑓 = 𝐼𝐼 𝑜𝑜 𝑓 = 𝑁𝑁𝑁 𝑎𝑎𝑎 𝑛 𝑖𝑖 𝑒𝑒𝑒𝑒
𝑁𝑁𝑁                        𝑓 = 𝑁𝑁𝑁 𝑎𝑎𝑎 𝑛 𝑖𝑖 𝑜𝑜𝑜

                  (3) 

Proof. When f = ID , then at n > 1 𝑓𝑛= ID, where ID is the neu-
tral element of the operator. That is why it is necessary to 
demonstrate that at f = NOT and n > 1, when n is even, then 
𝑓𝑛= ID and when n is odd 𝑓𝑛= NOT. For n = 1 𝑁𝑁𝑁 1 =  𝑁𝑁𝑁 
and then the assertions are true. For n = 2 и 𝑁𝑁𝑁 2 =  𝑁𝑁𝑁 ◦ 
𝑁𝑁𝑁 = 𝐼𝐼. If it is accepted that the Assertion is true for all n = 
k, then for (k+1) is obtained 

𝑁𝑁𝑁 𝑘 + 1 =  𝑁𝑁𝑁 ∘  𝑁𝑁𝑁 𝑘 =  �
𝑁𝑁𝑁 ∘  𝑁𝑁𝑁 𝑖𝑖 𝑘 𝑖𝑖 𝑜𝑜𝑜

𝑁𝑁𝑁 ∘  𝐼𝐼           𝑖𝑖 𝑘 𝑖𝑖 𝑒𝑒𝑒𝑒 

=  �
 𝐼𝐼        𝑖𝑖 𝑘 𝑖𝑠 𝑜𝑜𝑜

𝑁𝑁𝑁           𝑖𝑖 𝑘 𝑖𝑖 𝑒𝑒𝑒𝑒 

the second equality follows from the Statements for induc-
tion.  . 

2.2 Operators for excluding OR 
It is possible to express a set 𝐵1 with the help of the single-byte 
values 𝔹 and the operator for excluding or. This, in turn, will 
allow the combination of Boolean functions, and not only 
Boolean values, through the operator for excluding or. The 
algebraic structure of the Boolean values, combined by exclud-
ing or, is well known, but is expressed in a different way in 
Formal prerequisite 3.  The set 𝔹 together with the operator for 
excluding or ⊕ forms the Abelian group (𝔹, ⊕). 
Proof. The Cayley table should be taken into account  (𝔹, ⊕). 

Table 1: Cayley table for (B, ⊕). 

From the Cayley table follows, that 𝔹 is closed under ⊕ and 

that ⊕ is both associative and commutative.  Even more, 0 is 
the neutral element and each element is its opposite.  
The Group (𝔹, ⊕) captures the functions in the 𝐵1. 
𝐼𝐼(𝑏) = 𝑏 ⊕ 0 = 𝑏 
𝑁𝑁𝑁(𝑏) = 𝑏 ⊕ 1 = 𝑏� 
𝑍𝑍𝑍𝑍(𝑏) = 𝑏 ⊕ 𝑏 = 0 
𝑂𝑂𝑂(𝑏) = 𝑏 ⊕𝑁𝑁𝑁(𝑏) = 1    (4) 
The most common way for composing 𝐵1 functions in phased 
functions is through the operator for excluding or. Equation 4 
allows for expansion of ⊕ to 𝐵1. 
Definition 3. The operator for excluding or ⊕ on the set 𝐵1 is 
defined in such way that for each b ∈ 𝔹 and f, g ∈ 𝐵1 
(𝑓⊕𝑔)(𝑏) = 𝑓(𝑏)⊕𝑔(𝑏) 
The composition of elements from 𝐵1, using ⊕, have a well-
defined structure. 
Formal prerequisite 4. The set 𝐵1 together with the operator for 
excluding or ⊕ forms the Abelian group (𝐵1, ⊕). 
Proof. The Cayley table for (𝐵1, ⊕) follows from equation 4. 

Table 2.1: Cayley table for  (𝑩𝟏, ⊕). 

From table 2.2 follows that 𝐵1 is closed under ⊕.  In fact for f, 
g ∈ 𝐵1 is obtained  
 

𝑓⨂𝑔 𝜖 � 𝐵𝐵𝐵        𝑓 𝜖 𝐵𝐵𝐵,𝑔 𝜖 𝐶𝐶𝐶𝐶𝐶 𝑜𝑜 𝑓 𝜖 𝐶𝐶𝐶𝐶𝐶,𝑔 𝜖 𝐵𝐵𝐵
𝐶𝐶𝐶𝐶𝐶                                                  𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒

 

  (5) 

Furthermore, it is obtained that ⊕ is commutative, ZERO is 

the neutral element and each element from 𝐵1 is its opposite. 

The associativity of ⊕ can easily be checked through Defini-

tion 3 and equation 4. 

  

Note 4 Equation 5 is useful in analysis of functions, defined by 
combination of elements from 𝐵1 using the operator ⊕. 
Similar to ⊕ on 𝔹, the reapplication of ⊕ can be extended to 
𝐵1, as shown in definition 4 and Formal prerequisite 4. 
Definition 4. For f ∈ 𝐵1, 𝑓⊕𝑛 , is the iterated composition 
through ⊕ of f.   

 𝑓⊕𝑛 = �
𝑍𝑍𝑍𝑍            𝑛 = 0
𝑓⊕  𝑓⊕(𝑛−1) 𝑛 > 0  (6) 

Formal prerequisite 5. For f ∈ 𝐵1 and n > 0, 

𝑓⨁𝑛 =  �
𝑓        𝑖𝑖 𝑛 𝑖𝑖 𝑜𝑜𝑜
𝑍𝑍𝑍𝑍 𝑖𝑖 𝑛 𝑖𝑖 𝑒𝑒𝑒𝑒   (7) 
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Proof. At n = 1 𝑓⊕1 = f and the Assertions is true. At n = 2 𝑓⊕2 
= f ⊕ f = ZERO. If it is accepted that the Assertion is true for 
all n = k, then for (k+1) is obtained  

𝑓⊕(𝑘+1) =  𝑓 ⊕  𝑓⊕𝑘 =  �
𝑓 ⊕ 𝑓 𝑖𝑖 𝑘 𝑖𝑖 𝑜𝑜𝑜

𝑓 ⊕𝑍𝑍𝑍𝑍  𝑖𝑖 𝑘 𝑖𝑖 𝑒𝑒𝑒𝑒 

=  �
 𝑍𝑍𝑍𝑍        𝑖𝑖 𝑘 𝑖𝑖 𝑜𝑜𝑜
𝑓               𝑖𝑖 𝑘 𝑖𝑖 𝑒𝑒𝑒𝑒  

the second equality follows from the hypothesis for induction.
         
Functions for negation and addition in 𝐁𝟏 
The addition or negation of functions play a key role at the 
approach for phase encoding and decoding to the models of 
disturbance. 
The collating process of the function f ∈ 𝐵1 to its addition 𝑓̅ 
can be expressed in many different ways. 
Formal prerequisite 6. For each f ∈ 𝐵1, 

𝑓̅ =  �

𝑓⨁𝑂𝑂𝑂 𝑎𝑎𝑎𝑎𝑎𝑎
𝑂𝑂𝑂⨁𝑓 𝑎𝑎𝑎𝑎𝑎𝑎
𝑁𝑁𝑁 ∘ 𝑓 𝑎𝑎𝑎𝑎𝑎𝑎
𝑓 ∘ 𝑁𝑁𝑁 𝑓 ∈ 𝐵𝐵𝐵

    (8) 

Proof. The proof of the above equations follows from the Cay-
ley tables for ⊕ and ◦, Definition 3 and Formal prerequisite 3.
 
         
It is also useful to be understood how the addition is distribut-
ed on ◦. 
Formal consequence 4. For the functions f and g in 𝐵1, 

𝑓 ∘ 𝑔������ =  �𝑓
̅ ∘ 𝑔 𝑎𝑎𝑎𝑎𝑎𝑎
𝑓 ∘ 𝑔̅ 𝑓 ∈ 𝐵𝐵𝐵   (9) 

Proof. The distributivity of the addition of a function with ◦ 
derives from consequence 3. 
The following Formal prerequisite is useful at the develop-
ment of ideas for phase encoding and decoding, as it allows 
the negation of bits to be subtracted in the phase function and 
in this way allows for operation only with (𝐵1, ◦, ⊕). 
Formal prerequisite 7. If 𝑥̅ = NOT(x) at x ∈ 𝔹. Then for each f 
∈ 𝐵1, f(𝑥̅) = (f ◦ NOT)(x) = (f ⊕ ONE)(x). 
Proof. The fact that f(𝑥̅) = f(NOT(x)) = (f ◦ NOT)(x) is clear. The 
fact that f(𝑥̅) = (f ⊕ NOT)(x) follows from the definition for NOT, 
given in equation 3.     
Structure of (𝑩𝟏, ◦, ⊕) 
The elements of phase functions, namely 𝐵1, under composi-
tion by ◦ and ⊕ have well defined algebraic structure. 
Formal prerequisite 8. The structure (𝐵1, ◦, ⊕) is a right close 
ring. 
Proof. (𝐵1, ⊕) is Abelian group.  (𝐵1, ◦) is a monoid and there-
fore semigroup. Finally, ◦ is distributed on ⊕ on the right, so 
that 
(a ⊕ b) ◦ c = (a ◦ c) ⊕ (b ◦ c) 
In order to be seen this, are viewed three cases. 

Where a, b ∈ CONST. According to equation 5 (a ⊕ b) is in 
CONST and therefore (a ⊕ b) ◦ c = (a ⊕ b) = (a ◦ c) ⊕ (b ◦ c) for 
each c ∈ 𝐵1 according to consequence 3. 
Where a, b ∈ BAL. According to equation 5 (a ⊕ b) is in 
CONST and therefore (a ⊕ b) ◦ c = (a ⊕ b) according to conse-
quence 2.2.1.2. When c ∈ BAL, then by Formal consequence 3 
the composition of a or b with c or will define a and b, at c = ID, 
or will reverse their sign at c = NOT. It is easily proved that, in 
all cases, this will reduce (a ◦ c) ⊕ (b ◦ c) to (a ⊕ b). 
When a and b are located in different subsets of 𝐵1. Without 
losing the generality, it can be assumed that a ∈ BAL and b ∈ 
CONST. From consequence 3 follows that (a ◦ c) ⊕ (b ◦ c) = (a ◦ 
c) ⊕ b and at b = ZERO, (a ◦ c) ⊕ b = (a ◦ c) = (a ⊕ b) ◦ c. When 
b = ONE, according to consequence 2.2.2.5 (a ◦ c) ⊕ b = (𝑎� ◦ c) = 
(a ⊕ b) ◦ c. 

3 CONCLUSION 
One of the key components of this chapter, in contrast to the 
standard presentation of B1, is showing the difference between 
the sets BAL and CONST. Although the express handling with 
these sets may look at this stage randomly, it is an important 
element of the functions for phase encoding. Often it is possi-
ble to be simplified the analysis of an encoding function or 
decoding connection only through the understanding of the 
ways in which BAL and CONST functions interact. The right 
close ring (𝐵1, ⊕) serves as a basis for construction of Boolean 
functions, that capture the encoding of binary information to 
the phase space of quantum states. The algebraic structures, 
presented in this chapter, explicitly emphasize the ways in 
which these functions can be manipulated. 
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